current
March 3rd, 2020 at 7:36pm
Overview
Abstract
Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis(1,2). Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.
Authors
Zhang H • Emerson DJ • Gilgenast TG • Titus KR • Lan Y • Huang P • Zhang D • Wang H • Keller CA • Giardine B • Hardison RC • Phillips-Cremins JE • Blobel GA
Link
Journal
Nature
PMID:31776509
Published
December 2019