current
March 8th, 2022 at 8:51pm
Overview
Abstract
We present an approach that combines a Cas9 that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing technologies to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of novel multi-target gRNAs (mgRNAs), degenerate gRNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, discovering rapid post-cleavage Cas9 departure and repair factor loading at PAM-proximal genomic DNA. Moreover, by bypassing confounding effects from gRNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and Cas9 cleavage is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double strand breaks with high temporal resolution, discovering the presence, extent (under 2 kb), and kinetics (~ 0.5 hr) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.
Authors
Zou RS • Marin-Gonzalez A • Liu Y • Liu HB • Shen L • Dveirin R • Luo JXJ • Kalhor R • Ha T
Link
Journal
bioRxiv
doi:10.1101/2022.01.18.476836
Published
January 20th, 2022